Extensions 1→N→G→Q→1 with N=C15 and Q=C22×S3

Direct product G=N×Q with N=C15 and Q=C22×S3
dρLabelID
S3×C2×C30120S3xC2xC30360,158

Semidirect products G=N:Q with N=C15 and Q=C22×S3
extensionφ:Q→Aut NdρLabelID
C151(C22×S3) = S32×D5φ: C22×S3/S3C22 ⊆ Aut C15308+C15:1(C2^2xS3)360,137
C152(C22×S3) = C2×D5×C3⋊S3φ: C22×S3/C6C22 ⊆ Aut C1590C15:2(C2^2xS3)360,152
C153(C22×S3) = C2×D15⋊S3φ: C22×S3/C6C22 ⊆ Aut C15604C15:3(C2^2xS3)360,155
C154(C22×S3) = C2×S3×D15φ: C22×S3/D6C2 ⊆ Aut C15604+C15:4(C2^2xS3)360,154
C155(C22×S3) = S3×C6×D5φ: C22×S3/D6C2 ⊆ Aut C15604C15:5(C2^2xS3)360,151
C156(C22×S3) = S32×C10φ: C22×S3/D6C2 ⊆ Aut C15604C15:6(C2^2xS3)360,153
C157(C22×S3) = C22×C3⋊D15φ: C22×S3/C2×C6C2 ⊆ Aut C15180C15:7(C2^2xS3)360,161
C158(C22×S3) = C2×C6×D15φ: C22×S3/C2×C6C2 ⊆ Aut C15120C15:8(C2^2xS3)360,159
C159(C22×S3) = C3⋊S3×C2×C10φ: C22×S3/C2×C6C2 ⊆ Aut C15180C15:9(C2^2xS3)360,160

Non-split extensions G=N.Q with N=C15 and Q=C22×S3
extensionφ:Q→Aut NdρLabelID
C15.(C22×S3) = C2×D5×D9φ: C22×S3/C6C22 ⊆ Aut C15904+C15.(C2^2xS3)360,45
C15.2(C22×S3) = C22×D45φ: C22×S3/C2×C6C2 ⊆ Aut C15180C15.2(C2^2xS3)360,49
C15.3(C22×S3) = D9×C2×C10φ: C22×S3/C2×C6C2 ⊆ Aut C15180C15.3(C2^2xS3)360,48

׿
×
𝔽